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Executive Summary 
 

The Nation has experienced increasing devastation from heavy precipitation events recently. In 

just the past 3 years, 13 precipitation-related billion-dollar disasters in the Nation have resulted 

in over 200 deaths. This trend has dramatically increased the demand and expectations from core 

decision makers for accurate, consistent, and understandable rainfall forecasts. Heavy 

precipitation and resulting flash flooding occur across the year with seasonal and geographic 

variations. The predictability of these events varies with event type, region, and season. 

 

Several ongoing NOAA efforts might aid in improving forecasts of extreme precipitation, 

however, precipitation forecasting from minutes to 10 days is not a focus among these efforts. 

These include the Earth Prediction Innovation Center (EPIC), the NOAA Water Initiative, and 

recent investments to improve prediction on subseasonal to seasonal (S2S) time scales. 

Therefore, there is a need for significant investment for precipitation in the weather time scale. 
 

Motivated by the need to improve forecast skill and threat communication, the NOAA 

Hydrometeorological Testbed (HMT) organized a workshop with diverse participation of NOAA 

operational and research partners. Presentations illustrated key operational challenges and 

emerging new science and technology. Workshop participants discussed next steps to meet these 

goals, high priority challenges, and metrics for tracking improvements. Participants 

recommended initiating a planning process for an extreme precipitation forecasting improvement 

project, with the investments in this area benefitting S2S and water prediction as well.  

 

Investments in extreme precipitation 

prediction will have benefits for 

integrated water and subseasonal to 

seasonal (S2S) prediction. 

 

 

 

 

High-priority hydrometeorology challenges identified: 

• Improve numerical model quantitative precipitation forecast (QPF) and streamflow 

forecast skill, with reliability (the ability to give unbiased probability estimates) and 

sharpness (the ability to forecast extreme values) 

• Create continuum of decision support services (DSS) for extreme rainfall from weather to 

S2S for more effective risk communication to core partners, including water resource 

management  

• Improve risk communication through the cross disciplinary engagement between physical 

and social sciences 

• Establish the ability to disentangle errors from coupled meteorological and hydrological 

models 

 

Candidate metrics identified:   

• Double the rate of improvement of numerical weather prediction (NWP) precipitation 

skill, from the current rate of 1% a year to 2% a year using a baseline of the Global 

Forecast System (GFS) precipitation skill.  

https://owaq.noaa.gov/Programs/S2S
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• Extend extreme rainfall services to Day 10.  

• Improve the reliability and sharpness of probabilistic information for extreme events. 

• Narrow the 5-day landfalling position of atmospheric rivers on the west coast and Alaska 

from 500 km. 

• Improve the skill of atmospheric forcings provided to the National Water Model (NWM) 

and other hydrological models.  

 

Two overarching approaches were identified to address these challenges:   

• Improve NWP forecasts of rainfall. The skill of rainfall events has improved at a slower 

rate of improvement than even hurricane intensity skill. The pace of improvement in 

NWP rainfall forecasts needs to accelerate, including improved calibration of 

probabilistic forecasts (reliable and sharp distributions). 

• Narrow the gap between what we know (full model data/post processing/scenarios) and 

what we tell (quality and quantity of DSS). A first step is to make use of good information 

not yet being used by NWS forecasters, and thus not available to partners and the public. 

Addressing this involves both the physical and social sciences, including mining critical 

information from ensembles for forecasters to use, visualizing such information, as well 

as product design, and communication best practices. 

 

The group recognized the need to continue discussions and called for an effort to develop an 

HFIP-like improvement plan for a program to improve predictions of extreme precipitation, 

and provide better forcings for flood predictions, and more effective watches and warnings. 

This program would encompass extreme precipitation and its impacts with timescales ranging 

from minutes to 10 days, as well as the forcings necessary to meet the challenges of hydrologic 

modeling. This program would be a NOAA-focussed interagency effort within the US and 

western North America that advances the science and makes improvements in predictions in 

these time scales (sub-daily to 10 days). Achieving these goals will require leveraging efforts of 

the Next Generation Global Prediction System (NGGPS), Unified Forecast System (UFS), and 

the Earth Prediction Innovation Center (EPIC). Such an effort will directly contribute to 

advancements needed to address the Precipitation Grand Challenge, including providing 

better set up for S2S precipitation outlooks. The group supported continuing current HMT 

experiments including the Winter Weather and Flash Flood and Intense Rainfall Experiments 

(WPC-HMT 2019a,b; Erickson et al. 2019; Barthold et al. 2015). Investment in extreme 

precipitation will have benefits across Climate Weather, and Water. 

 

Near term activities towards such a program include:  

• Contribute to the Precipitation Grand Challenge effort. 

• Develop research questions to address both near term and long-term forecast challenges. 

• Contribute to the UFS effort, in particular, the forecast goals and science priorities related 

to UFS applications for medium-range weather (atmospheric behavior out to about two 

weeks) and S2S (atmospheric and ocean behavior from about two weeks to about one 

year) 

• Conduct near real-time investigations of high impact extreme hydrologic events.  

• Begin a more comprehensive process to more fully lay out science and implementation 

plans for an extreme precipitation improvement program.  
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1. Introduction 

 
The Nation has experienced increasing devastation from heavy rainfall events recently. In just 

the past 3 years, there have been 13 separate billion-dollar disasters in the nation, resulting in 

over 200 deaths. This trend has dramatically increased the demand and expectations from core 

decision makers for accurate, consistent, and understandable rainfall forecasts. Heavy 

precipitation and resulting flash flooding occur throughout the year with seasonal and geographic 

variations (Fig. 1). The predictability of these events varies with event type, region, and season 

(Fig. 2). 

 

 
Figure 1. Examples of heavy precipitation events spanning diverse geographical 

areas and across seasons. (Novak and Carbin presentations) 

 

Extreme precipitation spans the Weather - Water - 

Climate interface, and is key to the Precipitation 

Prediction Grand Challenge that has recently been 

established by the NOAA Climate, Weather, and Water 

Board. The set-up for extreme precipitation risk spans 

seasons to minutes (Fig. 3), providing a connection to 

other aspects of climate and water. Furthermore, 

systematic model biases start in the weather time-frame 

(first hour of the forecast). Therefore, improving near-

term errors and biases in the first 10 days will cascade to 

improvements in the S2S timeframe (weather out to 

seasonal timescale). 

 

 

Furthermore, with the advent of Impact-Based Decision Support Services (IDSS, 

https://www.weather.gov/about/idss) to core partners, there is a need for clear and effective 

communication in heavy rainfall events. Finally, to translate the precipitation into flood impact 

information, there is a need for both improved hydrology and atmospheric forcings as well as 

Figure 2. Predictability by event type. 

https://www.weather.gov/about/idss


 Page | 5 

social sciences to inform product needs, design, and communication. Advances in hydrologic 

information will plateau if they are not matched by improvements in precipitation forcings. 

 

 
Figure 3, Risk of extreme precipitation sets up days to seasons prior to the event. From Introduction 

presentation by Novak. 

Given the need for improvements in forecast skill and threat communication, the NOAA 

Hydrometeorological Testbed (HMT) organized a workshop with diverse participation of NOAA 

operational and research partners. The workshop was designed to identify operational forecast 

challenges in the Day 0 - 10 timeframe, with specific goals to: 

 

• Review science goals for the HMT 

• Discuss the state of the science and operational needs for decision support 

• Foster ongoing integration among operations & research partners 

• Explore the concept for a focused improvement program on extreme precipitation 

forecasting and modernizing flood forecasting, and towards that goal, identify a small set 

of high-priority hydrometeorology challenges and candidate goals and metrics 

 

To foster discussion, the workshop was organized around brief talks illustrating key operational 

challenges and emerging new science and technology. This report uses key figures from these 

presentations to illustrate the current problems found in forecasting precipitation. Organizers 

intentionally invited a diverse group of participants from NWS operational and regional offices, 

NWS headquarters and policy offices, and several NOAA research labs. Invited presentations 

and panel discussions focused on types of forecast challenges, operational forecasting 

perspectives, and emerging science. Much of the afternoon was devoted to discussion on themes 

and foci to advance science and forecasting of extreme precipitation. A list of attendees is 

provided in Appendix A, along with links to the agenda and presentations, discussion notes 

(Apdx. B), background on the HMT (Apdx. C), HMT-relevant metrics tracked by NOAA (Apdx. 

D), and a list of acronyms (Apdx. E).  

 

At the end of this document we propose a planning process for an extreme precipitation 

forecasting improvement project, with the investments in this area benefitting S2S and water 

prediction as well.  
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2. Key Challenges For Forecasting Precipitation 
 

NWS forecasters have been leveraging NWP to provide rainfall forecasts for many decades. As 

weather modeling improved, so have the forecasts, but recently this pace has slowed (Fig 4). The 

Day 1 Equitable Threat Scores (ETS) for 1” QPF have remained around 0.34 and the 2” QPF has 

remained around 0.25 for the past 10 years. The trends for 2” QPF are on pace to match the skill 

for Day 1 from a decade ago. Similarly, for current Day 3, the ETS nearly matches the skill of 

Day 2 from a decade ago. These metrics are tracked by NOAA, see Appendix D for HMT-

relevant metrics. In his presentation, WPC Director David Novak noted that fine-scale 

precipitation extremes remain a challenge, and while forecasters still add value over model 

guidance, the gap between forecasters and models (specifically ensembles) is closing.  

 

The NWS Global Forecast System (GFS) skill of 1” rainfall events has improved ~15% over the 

past 16 years (Fig. 4), a slower rate of improvement than even hurricane intensity skill. Skill also 

varies by event type and by region of the country (Fig. 5, and Sukovich et al. 2014). For a primer 

on verification metrics for probabilistic forecasts, including reliability, discrimination, and 

sharpness, see Hudson (2017) and the NWS Glossary of Verification Metrics (undated). 

 

 
Figure 4. Global Forecast System (GFS) 24/48/72h annual FSS, 2003-2019. The rate of improvement of 

GFS precipitation skill over this 16 year period is ~15%. This lags improvements in other phenomena, 

including hurricane track (30-50% improvement) and 500mb Anomaly Correlation (~20%), and is on par 

with Hurricane Intensity (~15% 

Mesoscale convective systems in the Great Plains in the summer pose a particular challenge, as 

documented by Fritsch and Carbone (2004). Then - and still - the prediction of summer rainfall is 

the Achilles' heel of weather prediction – particularly how to reliably forecast deep, moist 

convection. Finer resolution models may handle these systems better, as they can more explicitly 

represent the convective features, but the spatio-temporal accuracy is much lower than other 

precipitation features - even at short lead times. Participants discussed the variations in 

predictability by event type, region, and season, citing the work of Sukovich et al. (2014), in 

particular regarding the Missouri River basin (Fig. 5). 
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Figure 5. Regional (a) probability of detection (POD), (c) false alarm ratio (FAR), (e) CSI, (g) bias, and 

(i) MAEcond values by River Forecast Center (RFC) aggregated over 2007–11 for the top 1.0% of 

precipitation events using the regional precipitation thresholds in Table 2 of Sukovich et al. (2014). 

Regional (b) POD, (d) FAR, (f) CSI, (h) bias, and (j) MAEcond values by RFC aggregated over 2007–11 
for the top 0.1% of precipitation events using the some regional precipitation thresholds. Bar graphs are 

color coded into four broad U.S. geo-graphical regions: West (green), upper Midwest (red), 

South/Southeast (yellow), and East/Northeast (blue). Brackets indicate 95% confidence intervals for the 

skill scores and bias. Table 9 in Sukovich et al. (2014). 

 

New ways for forecasters to contextualize the information from QPF and outlooks may 

ultimately lead to improvements to the end hydrologic impact forecast. In the theme of 
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contextualizing information, continuing to extract more useful and relevant information from our 

models is needed. For example, the precipitation rate over a 15-minute period or smaller, not 

currently output by our fine scale modeling systems, could help decision makers.  

 

Novak discussed predictability challenges associated with winter storms near significant 

metropolitan areas. The sudden change in precipitation type (from rain to snow) can have a large 

effect on the public and core partners. In some cases, forecasts verified well and in others small 

errors in timing, location, duration, and intensity resulted in large snow amount errors. This 

highlights the sensitivity that comes with forecasting for large population areas in particular 

when there may be a more severe consequence for a low Probability of Detection (POD) than a 

high False Alarm Ratio (FAR).  

 

Curtis Alexander of the Global Systems Lab described efforts funded in part by the 

USWRP/HMT and tested in the HMT Winter Weather Experiment. These efforts are making 

enhancements to the RAP-HRRR model suite and are intended to expand on the current 

RAP/HRRR winter forecast fields to include Variable-Density Snow Accumulation and Surface 

Precipitation Type Estimation (Figure 6).  

 

Figure 6. HRRR comparison of snowfall amount between v3 (left) and v4 

(middle) compared to NOHRSC snowfall analysis (right), where v4 uses a 

variable density snow-to-liquid ratio which varies by lowest model level 

temperature (Alexander presentation). 
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Atmospheric rivers are an important 

source of precipitation on the west coast 

of the US and Alaska. They often result 

in flooding causing an average of $1.1 

Billion in damages annually on the west 

coast (San Francisco Chronicle, 2019). 

However, the average GEFS AR 

landfall error in the 5-day forecast is 

~500 km (Fig 7, and Wick et al. 2013), 

which is not sufficient for managing 

reservoirs to mitigate flooding and 

maximize water storage (Haynes 

presentation). Better forecasts from 

seasonal to individual atmospheric 

rivers would help local water 

management be better prepared. 

Rowden echoed NWS deep core partners’ need for improved precipitation and reservoir inflow 

forecasts in much of the west, where reservoir managers are often navigating a fine line between 

drought and flood operations.  

 

Tropical systems provide a large amount of precipitation to the southern US coast along with 

thunderstorms. Lance Wood, the Science and Operations Officer at the WFO 

Houston/Galveston, described examples from several hurricanes, including Hurricane Harvey in 

Houston. The examples highlighted how forecast confidence with extreme accumulations over a 

large area contrasted with more recent Hurricane Imelda (Fig. 8) with lower forecast confidence 

and extreme accumulations over a smaller area. Workshop participants discussed whether 

products depicting specificity, like the High Resolution Ensemble Forecast  

(HREF) maximum rainfall, could lead to communication challenges for users trying to 

understand if their counties were at risk. Products depicting flooding risk like the Excessive 

Rainfall Outlook (ERO) may help communicate the risk more effectively. Key to either product 

approach is the recognition that extreme rainfall is best expressed probabilistically. 

 

 
Figure 8. Successful collaboration with the WPC resulted in WFO Houston issuing an accurate Day 1 

High risk area for Imelda(Wood presentation).  

Figure 7. AR landfalling RMS (root mean square in 

kilometers) by forecast lead time in days. From Wick et al. 

(2013), fig 11. 
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3. Key Challenges for Hydrological Forecasting 

 
There is a need to improve ability to anticipate the most extreme flooding days, and yet 

forecasting these events remains a science challenge as well as a forecast communication 

challenge. Capturing risk of these events in national scale products has had mixed success as 

flash flooding is a small-scale phenomenon. Among the challenges is that heavy precipitation 

and resulting flash flooding occurs across the year with seasonal and geographic variations. 

Depending on the place, time of year, and other factors, heavy rainfall may or may not result in 

flooding. Forecasting flood events requires an appreciation of underlying hydrology (e.g. soil 

moisture, soil saturation, drainage characteristics), and understanding which basins are more 

vulnerable than others. 

 

Improvements to flood and hydrologic impact forecasts as well as related IDSS will require 

understanding both the error characteristics from hydrology and meteorology and improving 

those modeling systems. In other words, while hydrology modelers may point to the “forcing” 

(e.g., QPF) for forecast error, and meteorologists may point to complex or black-box-like hydro 

models for forecast error, investments in both aspects of flood forecasting are needed. 

Forecasting flood events also requires an appreciation of underlying hydrology (e.g. soil 

moisture, soil saturation, drainage characteristics), because depending on the place, time of year, 

and other factors, heavy rainfall may result in different flooding characteristics. Thus, it is 

necessary to identify more vulnerable basins. Further, it is necessary to provide ways for 

forecasters to synthesize this information in the context of the QPF and outlooks, to enable the 

issuance of effective watches and warnings. 

 

The Ellicott City, MD flooding events came up numerous times in the workshop. These events 

illustrate the challenge of predicting heavy precipitation events at sufficient temporal and spatial 

detail. The localized and extreme flood event of July 30, 2016 ensued from 6.6" of rain in three 

hours. WPC Forecast Operations Branch Chief Greg Carbin described how the risk was difficult 

to represent in an outlook product (a ‘Slight’ risk was in effect in the ERO product) because of 

the challenge of forecasting precipitation at fine spatial scales. Although a warning was issued 40 

min in advance, the catastrophic nature of the event was not anticipated (Carbin presentation).  

 

Kelly Mahoney of the OAR Physical Sciences Laboratory described a case study from Ellicott 

City flooding in 2018 (Viterbo et al. 2020). This study began as rapid-response, near-real-time 

investigation intended to complement ongoing work with OWP/NWC to disentangle forecast 

errors from NWM possibly resulting from precipitation forcing. In this case, the HRRR spatial 

error resulted in an underforecast of flooding for Ellicott City (Fig. 9). However, when 

precipitation objects were moved to account for the spatial error, flooding was over-forecast for 

this small basin. Additionally, using observations to drive the water model, they found that small 

basins were straightforward with predictions from rainfall to streamflow. However, in large 

basins, teasing out the root causes of errors was more difficult. In particular, Mahoney discussed 

how errors amplify: spatial displacement or temporal error in the precipitation forecast can result 

in a forecast bust from the hydrologic model.  
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The cross-timescale nature of some hydrologic events was illustrated by the various flooding 

events experienced in the Missouri River Basin in 2019. Wendy Pearson, the Hydrologist-in-

Charge of the Missouri Basin River Forecast Center, described the set-up of high seasonal 

snowpack in the upper basin, then heavy rain on snow covered and frozen ground. As high flows 

from spring melting occurred, there were ice jams in many areas, and even excess sediment and 

river debris transport. The Army Corps Cold Regions Research and Engineering Laboratory 

(CRREL) has an ice break/jam model that provides approaches for predicting these jam events, 

but it needs to be simplified to be useful in real time river forecast operations. To better forecast 

the streamflow of the these S2S to storm scale events, RFCs need better forecasting of QPF and 

precipitation types, ways of handling differences between snow and rain, and better ways to deal 

with these in RFC hydrologic models. 

 

The significant hazard of post-fire flooding and 

debris flows, especially in the west, was described 

by Katherine Rowden, the NWS Western Region 

Hydrology Program Manager. In debris flow 

cases, the instantaneous rainfall intensity, not 

accumulation, is what triggers initiation of debris 

flows. Rowden described an experimental product 

from NSSL which overlays estimated observed 

rainfall with debris flow thresholds used by 

WFOs for flash flood warnings, which are derived 

by the US Geological Survey (USGS) (Fig. 10), 

and is being tested in California and Colorado. 

Products like this may be useful in WFO’s for 

Figure 9. Watershed evaluation of the Ellicott City Flood. While errors accumulate in larger basins, 

Small basins show promise for NWM in capturing flooding signals. (Mahoney presentation) 

Figure 10. An experimental product from NSSL 

overlays mapped estimated rainfall over debris 

flow thresholds. (Rowden presentation) 
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IDSS, as discussed in a recent workshop on post-wildfire hydrology (NWS, 2019). 

 

As the complexity of the water modeling suite increases so does the pressure to ensure that 

upstream modeling components are accurate and downstream models to be properly initialized, 

updated, and maintained. Model coupling will challenge our abilities to describe and 

discriminate between errors among the various sources of input data, as was demonstrated by 

Mahoney earlier.  

 

To more fully deal with accuracy errors of NWP, ensemble hydrological modeling has been 

performed using the FLASH system, forced with precipitation forecasts from the Warn-on-

Forecast ensemble system, described by J.J. Gourley of the OAR National Severe Storms 

Laboratory. In the discussion, probabilistic flooding information was seen as beneficial to the 

issuance of warnings with greater lead times since uncertainty was explicitly accounted for. 

Being able to quantify the uncertainty and make better short-range forecasts can be a game 

changer for short term IDSS, participants said. 

 

 
Figure 11. FLASH CREST maximum unit streamflow product showing an example of real-time outputs during 

Washington DC flash flood emergency (08 July 2019). Deterministic (left) and probabilistic (right) data at 

1400 UTC 8 July 2019. Images taken from flash.ou.edu webpage, which was used during the project 

evaluations (Gourley presentation). 

 

Atmospheric rivers present a hydrologic forecasting challenge as well as a precipitation 

challenge. Alan Haynes, the Hydrologist-in-Charge of the California-Nevada River Forecast 

Center, described the challenges including better hydrologic modeling of small, flashy basins, 

especially those with high vulnerability, including high population. Thus there is a need is for 

better pinpointing which basins will be hit by ARs at longer lead times for decision makers. 

Situations that result in full reservoirs with large cumulative releases, and saturated soils, while 

also being hit with multiple AR events, can overwhelm the flood control system and threaten 

levees protecting urban populations, such as those described in White et al. (2019). Reservoir 

managers need to coordinate and manage water releases from multiple reservoirs and for 

multiple purposes, and thus need both short and S2S range forecasts to make informed decisions, 

including those for fisheries and ecosystems. NOAA has been involved in an effort with 
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California Department of Water Resources to leverage improvements in weather and water 

forecasts to better manage reservoirs (Forecast Informed Reservoir Operations, FIRO). Based on 

a preliminary viability assessment of forecast use (Jasperse et al 2017), in particular forecasts of 

intense precipitation and atmospheric rivers, the Army Corps of Engineers approved a deviation 

in operations to further test the use of these forecasts in the 2019 rainy season (Coleman 2019). 

FIRO efforts provide a pathway for use of improved forecast skill in reservoir operations.  

 

4. Key Challenges for Impact based Decision Support Services  
 

A theme that arose often is that making good forecasts doesn’t always translate to meeting user 

needs. User needs are better met by incorporating social and behavioral science assessments into 

the NWS IDSS. Equally necessary is helping forecasters acquire the skills and demands of the 

IDSS era. Impact-based Decision Support Services (IDSS) are being rolled out to core partners 

by the NWS. Partner demands and expectations are ever increasing. If we are to meet the 

communication challenges of being useful, usable and understandable with our products and 

services then so must our forecasts be timely and accurate for them to have value.  

 

During a panel discussion, participants from NWS operations described some of the 

communications challenges, from the perspectives of the NWS Flash Flood Program (Kate 

Abshire), the Eastern Region Science Services Division (Jeff Waldstreicher), the Western 

Region Hydro Program (Katherine Rowden), and an WFO Science Operation Officer (Lance 

Wood). These include unprecedented heavy rains from tropical systems and snowfall amount 

and timing. 

 

Participants discussed how using probabilistic language and probability better communicates our 

scientific conception of uncertainty but leaves much to be desired in communicating in a context 

for various publics to understand. When crafting IDSS messages, forecasters must distill 

ensemble forecast information into bite sized pieces of information. Lance Wood, the Science 

and Operations Officer of the WFO/Houston/Galveston, said that they find that the methods and 

tools NWS uses to construct summary information may be taken too literally or seem excessive 

depending on the kind of data presented. This point was echoed by Jeff Waldstreicher of the 

Eastern Region Science and Services Division: while forecasters have a sense of the uncertainty, 

that uncertainty may be poorly codified in a map or chart. In particular, it is a challenge to find 

the best ways to communicate the potential of an extreme rainfall event in the Day 4-7 forecast 

period, such as the period in which a tropical storm or hurricane threatens the coast, and in which 

Figure 12. Communicating what is possible. Low end-Expected-High end maps being tested by the Eastern 

Region and elsewhere define the “goalposts” for an event (Waldstreicher presentation). 
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actions might be taken to mitigate its impacts. They are testing maps that provide a range of 

expected conditions (Fig. 12). 

 

User understanding is increased when probabilistic information was accompanied by forecaster 

remarks (Karstens et al. 2018; ERG 2017, Carr et al. 2018, and Waldstreicher presentation). The 

role of the forecaster for decision makers includes being the Expert Interpreter, providing 

Contextual Information, relaying forecaster confidence and alternative scenarios from the 

perspective of the forecaster’s expert knowledge. Contextual information may also improve 

decision making abilities for core partners.  

 

Core partners need more nuanced information for particular areas like burn scars (e.g. 2014  

Carleton Complex fire & debris flows, Rowden presentation), or highly developed urban areas 

now made vulnerable to flooding (e.g. Ellicott City; Carbin and Mahoney presentations). 

Understanding the people goes a long way to designing the messages, but we need well 

developed information and well-trained communicators to design and deliver that message. 

 

Meeting partners needs and addressing their challenges could mean adding longer range products 

that detail risks/threats due to rainfall and flooding. But what information should be contained in 

such products, and how might it be displayed with an appropriate level of specificity and detail 

accounting for uncertainty? What information do water managers/planners need to enhance their 

decision making out to seasonal time scales? And does that information capability currently exist 

within the National Water Modeling portfolio? 

 

 

5. Findings 
 

Participants agreed that the HMT charter mission, vision, and activities are still valid and general 

enough to continue guiding the HMT program. The workshop identified several high priority 

challenges and approaches for addressing the challenges, and candidate metrics for tracking 

progress. These findings are the result of the diverse and informed perspectives at the workshop. 

It is recognized that these are not yet comprehensive, and further discussion and input are needed 

from a broader representation of science, operations, and partner communities. Presentations and 

discussions covered a range of emerging science, including that funded by the U.S. Weather 

Research Program testbeds, the Joint Technology Transfer Initiative (JTTI), and base funding at 

OAR labs. 

 

A broad theme of the meeting was that impacts based decision support is a growing need. To 

improve the value of the forecast for core partners in particular requires that messages contain 

actionable and understandable forecast information. However, messaging must also be precise 

for many individual users. On the meteorology side, the precision placement (or in a probabilistic 

framework, the confidence) of high rainfall-rate and/or large accumulations has not reached a 

skill commensurate with users’ needs. For hydrology, improved forecasts of precipitation out to 

10 days can help the NWC provide better decision support, but work is needed to establish the 

capabilities to simulate debris flows (sediment, ice, or debris transport).  
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The WPC Hydromet Testbed, and its Flash Flood and Extreme Rainfall, Winter Weather, and 

other experiments, were recognized as important efforts for testing advances in a quasi-

operational environment. Th OAR/Weather Program Office (WPO) support for testbeds and 

transition projects has provided dedicated funding for these and other testbeds, which have 

provided a successful pathway for R2O. 

 

As Fritsch and Carbone (2004) emphasize, probabilistic prediction is key to the extreme rainfall 

challenge. Meteorological ensembles have reached the point where they can be beneficial but 

how to make the best use of them in IDSS is an ongoing challenge. The challenges range from 

messaging to the publics to training forecasters how best to use the ensemble guidance to 

communicate the forecast.  

 

Discussions should continue on ways to build more coupled, integrated modeling systems - 

either linking atmospheric and hydrologic models or linking hydrologic models with debris flow 

models - that could assist more directly with user needs. But these modeling systems all 

propagate errors and teasing out the contributions to those errors is difficult. Insight, either 

through verification or evaluation, is needed. Reforecasting (such as the new GEFSv12) could be 

a foundation from which insight with current models could be constructed. However, all of these 

approaches require considerable computational investment. 

 

The theme of providing probabilistic information to express certainty/uncertainty (i.e. 

confidence) in the forecast will help start the conversation to prepare a long-term improvement 

plan. Through evaluation and verification of Numerical Weather and Hydrological Prediction 

(NWHP) models, we need to frame where the best allocation of resources can lead to 

improvements in probabilistic information. This improved information will better meet the needs 

of partners. 

 

High-priority hydrometeorology challenges: 

• Improve numerical model quantitative precipitation forecast (QPF) and streamflow 

forecast skill, with reliability (the ability to give unbiased probability estimates) and 

sharpness (the ability to forecast extreme values) 

• Create continuum of decision support services (DSS) for extreme rainfall from weather to 

S2S for more effective risk communication to core partners, including water resource 

management  

• Improve risk communication through the cross disciplinary engagement between physical 

and social sciences 

• Create continuum of extreme rainfall services from weather to S2S for more effective 

risk communication to core partners, including water resource management  

• Establish the ability to disentangle errors from coupled meteorological and hydrological 

models 

 

Two overarching approaches were identified to address these challenges:   

 

● Improve NWP forecasts of rainfall. The skill of rainfall events has improved at a slower 

rate of improvement than even hurricane intensity skill. The pace of improvement in 

NWP rainfall forecasts needs to accelerate, including improved calibration of 
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probabilistic forecasts (reliable and sharp distributions). Discussion highlighted that there 

is likely no silver bullet, and the opportunity to leverage NGGPS, UFS, EPIC, and other 

efforts. 

● Narrow the gap between what we know (full model data/post processing/scenarios) and 

what we tell (quality and quantity of DSS). A first step is to make use of what we already 

know. Several participants thought that there was good information that’s not yet being 

used in the NWS, and thus not available to partners and the public. Addressing this 

involves both the physical and social sciences, including mining critical information from 

ensembles for forecasters to use (perhaps using machine learning), visualizing such 

information, as well as product design, and communication best practices. 

 

Candidate metrics. The following candidate metrics were identified: 

 

• Double the rate of improvement of NWP precipitation skill, from the current rate of 

improvement of 1% a year to 2% a year using GFS precipitation skill as baseline  

• Extend heavy rainfall services to Day 10 (Improve DSS and connect to S2S) 

• Improve the reliability and sharpness of probabilistic information for extreme events  

• Narrow the 5 day landfalling position of atmospheric rivers on the west coast and Alaska 

from 500 km to 400 km. 

• Improve the skill of atmospheric forcings provided to the NWM and other hydrological 

models.  

 

These metrics will need further discussion to refine and develop baselines and numerical goals. 

See current HMT-related agency metrics in Appendix D. 

 

Discussion also highlighted opportunities within the multidisciplinary fields and communities 

working on extreme precipitation that may benefit the understanding, forecasting, and 

communication of extreme precipitation risks. To name a few, technological advances include 

the development of UFS; emergence of gap filling radars to cover observation gaps; new AWIPS 

functionalities to create variables/analysis; and machine learning and artificial intelligence 

capacities. The program on Forecasting a Continuum of Threats (FACETS, Rothfusz et al. 2018) 

and the Warn-on-Forecast program (Stensrud et al. 2009) are working to improve 

communication of forecasts, and leverage an emerging Social and Behavioral Science (SBS) 

capacity in NOAA. Along with NOAA’s partners such as cooperative institutes this SBS 

capacity has grown in the last decade, and now includes a social science program within the 

OAR WPO. Geospatial analysis is becoming easier and more common, and in combination with 

social science may allow identifying where more vulnerable basins and places exist, given any 

particular level of physical/meteorological events.  

 

Finally, participants endorsed the concept for a focused improvement program on extreme 

precipitation forecasting. The group recognized the need to continue discussions and called for 

an effort to develop a HFIP-like improvement plan (Gall et al. 2013) for extreme precipitation 

and its impacts with timescales ranging from minutes to a season.  

 

 

6. Conclusions and Next Steps 



 Page | 17 

 

The group recognized the need to continue discussions and called for an effort to develop an 

HFIP-like improvement plan for a program to improve predictions of extreme precipitation, 

and provide better forcings for flood predictions, including more effective watches and 

warnings. This program would encompass extreme precipitation and its impacts with timescales 

ranging from minutes to 10 days, as well as the forcings necessary to meet the challenges of 

hydrologic modeling. This program would be a NOAA-focussed interagency effort within the 

US and western North America that advances the science and makes improvements in 

predictions in these time scales (sub-daily to 10 days). Such an effort will directly contribute to 

advancements needed to address the Precipitation Grand Challenge, including providing better 

"set up" for subseasonal to seasonal precipitation outlooks. Next steps include identifying a 

planning team and time line for such an effort to develop a science and implementation plan to 

address the challenges identified above. These include the science and research needed in the 

three areas (Meteorology, Hydrology, Social and Behavioral Science) to support forecast and 

operational challenges, as well as to estimate the resource needs and opportunities. This science 

and implementation plan document would establish some specific and aspirational goals, 

informed by recent trends in WPC and NWHP verification, and consistent with the NWS 

Strategic Plan. These three main topical areas each require improvements, and as such, it is 

necessary to understand the crosscut linkages that will help place resources in a configuration to 

maximize our chances of realizing these improvements.  

 

Specifically, near term activities towards such a program include:  

 

a) Contribute to the Precipitation Grand Challenge effort. 

b) Develop research questions to address both near term and long-term forecast challenges. 

c) Contribute to the UFS effort, in particular, the forecast goals and science priorities related 

to UFS applications for medium-range weather (atmospheric behavior out to about two 

weeks) and S2S (atmospheric and ocean behavior from about two weeks to about one 

year) 

d) Conduct near real-time investigations of high impact extreme hydrologic events.  

e) Begin a more comprehensive process to more fully lay out plans for an extreme 

precipitation improvement program.  

 

Several ongoing NOAA efforts might aid in improving extreme precipitation, however, 

precipitation forecasting from minutes to 10 days is not a focus among these efforts. These 

include the EPIC, the NOAA Water Initiative, and recent investments to improve prediction on 

S2S time scales. Therefore, participants concluded that there is a ‘gap’ in investments for 

precipitation on this time scale, as depicted in Fig 13. To address this gap, the group 

recommended significant investment on this time scale, and supported continuing current HMT 

experiments and broadening the discussion to address the NOAA Precipitation Grand Challenge. 

Investment in extreme precipitation will have benefits across Climate Weather, and Water. 

 

https://owaq.noaa.gov/Programs/EPIC
https://www.noaa.gov/water/explainers/noaa-water-initiative-vision-and-five-year-plan
https://owaq.noaa.gov/Programs/S2S
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Figure 12. Investments in extreme precipitation prediction will have benefits 

for integrated water prediction and S2S prediction. 

 

Overall, the workshop served to galvanize a community around the heavy precipitation and 

flooding challenge. We are not meeting the ever-increasing needs of partners, as partners are 

looking for specific information on rainfall amounts (including intensity), where it will occur, 

when and the possible impacts it will have. Participants are motivated to address this 

challenge. 
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APPENDIX A: Workshop Materials and Attendees 
 

Workshop background materials are available in here: 

https://drive.google.com/drive/folders/1iQwehw0KGTRJ-_kDnkbA7p7gwmlx3BsH 

 

Link to Agenda: 

https://docs.google.com/document/d/1wLtBvk3TCA9qIVV3UB0r8KZitmAeYihIRGRQBmloF8

o/edit 

 

Link to Presentations: 

https://drive.google.com/drive/folders/1DR1qSIUWoW_6TAnMMupeMkVhBrcmoQ6x 

 

HMT Charter, 2016. https://drive.google.com/drive/folders/1Njp8APZYs-

5OYeeHXW2Wu94GBI6-vhtg 

 

Workshop Attendees 

 
Kate Abshire – NWS National Flash Flood Services Lead 

Curtis Alexander – NOAA Office of Oceanic and Atmospheric Research (OAR)/Global 

Systems Division (GSD) Acting Assimilation Development Branch Chief 

Tamara Battle – NOAA Office of Weather and Air Quality (OWAQ) Weather Act Policy 

Coordinator 

Mike Bodner – NWS Weather Prediction Center (WPC) Meteorologist/Developer 

Kandis Boyd - NOAA OAR OWAQ Acting Director 

Gregory Carbin – NWS WPC Forecast Operations Branch Chief 

Rob Cifelli – NOAA Earth System Research Laboratory (ESRL) Physical Sciences Division 

(PSD) Hydrometeorology Modeling and Applications Team Lead 

Edward Clark – NWS National Water Center (NWC) Director, HMT Executive Committee 

Grant Cooper – NWS National Centers for Environmental Prediction (NCEP) Acting Director 

James Correia Jr – NWS WPC Hydrometeorology Testbed (HMT) Coordinator Contractor 

David DeWitt – NWS Climate Prediction Center (CPC) Director 

Gina Eosco – NOAA OAR OWAQ Social Science Program Manager 

Michael Erickson – NWS WPC Research Scientist Contractor 

Kathryn Gilbert – NWS WPC and Ocean Prediction Center (OPC) Deputy Director 

JJ Gourley – OAR National Severe Storms Laboratory (NSSL) Research Hydrometeorologist 

Brian Gross – NWS Environmental Modeling Center (EMC) Director 

Kirstin Harnos – NWS WPC Winter Weather Experiment (WWE) Lead Contractor 

Alan Haynes – NWS California-Nevada River Forecast Center Hydrologist in Charge 

Joshua Kastman – NWS WPC Winter Storm Severity Index (WSSI) Research Scientist 

Contractor 

Mark Klein – NWS WPC Science and Operations Officer 

Bill Lamberson – NWS WPC Research Scientist Contractor 

Christopher Lauer – Economist, NOAA Social Science, Performance & Strategy Division 

Kelly Mahoney – ESRL/PSD Hydrometeorology Modeling and Applications Team 

Mary Mullusky – NWS Analyze, Forecast, and Support (AFS) Office Water Resource Services 

Chief 

https://drive.google.com/drive/folders/1iQwehw0KGTRJ-_kDnkbA7p7gwmlx3BsH
https://drive.google.com/open?id=1wLtBvk3TCA9qIVV3UB0r8KZitmAeYihIRGRQBmloF8o
https://docs.google.com/document/d/1wLtBvk3TCA9qIVV3UB0r8KZitmAeYihIRGRQBmloF8o/edit
https://docs.google.com/document/d/1wLtBvk3TCA9qIVV3UB0r8KZitmAeYihIRGRQBmloF8o/edit
https://drive.google.com/open?id=1DR1qSIUWoW_6TAnMMupeMkVhBrcmoQ6x
https://drive.google.com/drive/folders/1DR1qSIUWoW_6TAnMMupeMkVhBrcmoQ6x
https://drive.google.com/drive/folders/1Njp8APZYs-5OYeeHXW2Wu94GBI6-vhtg
https://drive.google.com/drive/folders/1Njp8APZYs-5OYeeHXW2Wu94GBI6-vhtg
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David Myrick – NWS Office of Science & Technology Integration (STI) Field-Driven R2O 

Team Lead and National Science and Operations Officer 

James Nelson – NWS WPC HMT Coordinator and Development and Training Branch (DTB) 

Chief 

David Novak – NWS WPC Director, HMT Executive Committee 

Michele Olson – NOAA OAR OWAQ Social Science Program Coordinator 

Wendy Pearson – NWS Missouri Basin River Forecast Center, Hydrologist in Charge 

Matthew Pyle – NWS EMC Engineering & Implementation Branch 

Andrea Ray – OAR ESRL Physical Sciences Division, PSD HMT Coordinator and Physical 

Scientist 

Katherine Rowden – NWS Western Region Hydrology Program Manager and NWS Post-Fire 

Hydrology Working Group Lead  

Beverly Sobel – NWS WPC Project Manager Contractor 

Sarah Trojniak – NWS WPC Flash Flood and Intense Rainfall Experiment (FFaIR) 

Coordinator Contractor 

Bruce Veenhuis – NWS WPC Meteorologist 

Jeff Waldstreicher – NWS Eastern Region HQ, Scientific Services Division 

Robert Webb – ESRL/PSD Director, HMT Executive Committee 

Lance Wood – NWS Houston/Galveston Science and Operations Officer 

Nusrat Yussouf – Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) & 

NSSL Research Scientist 

Jian Zhang – NSSL Warning Research & Development Division 
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APPENDIX B: Brainstorming Notes from Group Discussion 

 
1.  Key Challenges 

a. Need 5-15 min QPE and (P) QPF to capture the rainfall rates that are impactful. 

Post-fire flood and debris flows, especially in the western U.S. -- these require 5-

15 min QPE, (P) QPFs, and rain rates to capture the rainfall rates that are high 

impact for urban flooding as well. The MRMS v12 15 min QPF will help forward 

this. 

b. Need extension of precipitation information to the Day 4-7 timeframe. This is 

beyond existing CAMs, but general threat information can be provided. 

c. Central and southeastern US QPF -- skill in these regions is lower than other parts 

of the country, in particular for warm season convection  

d. Winter precipitation type challenges (rain-freezing ppt-snow and timing), in 

particular in the Northeast; rain-snow line and timing; melt level to determine p-

type (rain or snow) 

e. Distinguishing between ‘typical’ and ‘catastrophic’ impacts in advance 

f. Flood Outlook Potential (FOP) - categorical: [Flood] severity index (like winter 

storm severity index)? Method to communicate between outlooks, watches, and 

warnings 

g. Spatial (dis)placement/object-based verification 

h. Disentangling model errors (e.g., what is causing spatial placement or intensity 

“bust” 

i. Communication of range of possibilities and baseline uncertainty from model; 

conditional climatology 

j. Reforecast of guidance is necessary but, hard; computationally expensive 

k. Understand forecasters as a user (e.g., use of ensembles), including sufficient 

training 

l. Forecasts of the most extreme flooding days, such as Ellicott City or tropical 

storm-induced flood days and to be able to designate these in risk/threat products. 

Operations and core partners would like to be able to distinguish between 

‘typical’ and ‘catastrophic’ impacts in advance.  

m. Communicating threats and uncertainty for extreme precipitation events, 

including hurricanes 

n. Heavy rain events inland and the S2S and medium-range set-up for flooding 

o. Precipitation outlook information out to the Day 4-7 How do we best 

communicate the potential of an extreme rainfall event in the Day 4-7 forecast 

period? 

p. Predicting mesoscale frontal wave formation which can significantly increase 

precipitation duration over a given basin 

 
2. What is Needed to Address Challenges 

a. Computing (address span of requirements from first hour to Day 10) 

b. Machine learning to tease out information on extreme rainfall threats 

i. Data and people to work on this (PSD 20-year reanalysis) 

c. New kinds of verification - e.g., object-based, accounting for displacement 

i. “Cone of uncertainty,” “error” 3-4 days out? 
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d. Training - particularly of forecasters 

e. What is already available but not yet used in WFOs?   

 

3. Opportunities 

a. Gap filling radars - for ppt rate at short-time scales 

b. MRMS v12 15 min QPF and HRRR v4 hourly update to 18 hour - what outputs 

needed to learn from these models? 

c. AWIPS functionalities (JJ) to create variables/analysis without using bandwidth 

d. Machine learning capacities, AI 

i. Need to elevate NOAA corporate capabilities 

e. Leverage Social Behavioral Science (SBS) capacity in NOAA 

f. NOAA big data initiative for HRRR - data mining, model climatology 

g. Testbed participation by WFO forecasters as opportunity to understand use 

 

4. Other 

a. Timing - amount and where? Are the key precipitation issues 

i. Complement to Mesoscale Precipitation discussion 

ii. Vulnerability of some places 

iii. Machine Learning and geospatial => Where are more vulnerable places? 

Given a level of physical/meteorological events 

b. Integrate expected meteorology and expected hydrology - engineering/built 

environment 

i. Social Behavioral Science (SBS) - improving communication, 

understanding needs 

c. Uncertainty - different types - QPF and response uncertainty; static and dynamic 

hydrological uncertainty and how to communicate 3 dimensions 

 

  



 Page | 26 

Appendix C: Background on the WPC and NWS-OAR Hydrometeorological 

Testbeds 
 

The Hydromet Testbed refers to a suite of efforts with related goals and missions: 1) the 

NWS/WPC testbed, one of twelve testbeds and proving grounds that facilitate the orderly 

transition of research capabilities to operational implementation through development testing, 

and pre-deployment testing and operational readiness/suitability evaluation. A competitive grant 

program provides funding for projects to be developed and tested, under the U.S. Weather 

Research Program operated out of the OAR Office of Weather and Air Quality (OWAQ). 

OWAQ also funds projects on precipitation forecasting under the parallel Hazardous Weather 

Testbed operated by the NWS Storm Prediction Center. These projects complement projects in 

the HMT, and include some efforts discussed at this workshop. 

 

In 2016, a Charter was developed to encourage collaborative effort and a common mission and 

vision among the NWS WPC and National Water Center, and OAR to improve forecasts of 

extreme precipitation and forcings for hydrologic prediction (see 

https://drive.google.com/drive/folders/1Njp8APZYs-5OYeeHXW2Wu94GBI6-vhtg). HMT 

supports both OAR and NWS strategic objectives (HMT Charter, 2016). The Charter lays out a 

business model in which the HMT functions:  

 

● Fosters the adoption of new techniques, models, observing systems, and other advances 

with potential for improving forecast guidance and hydrologic forcings.  

● Incorporates well-established practices from the Joint Hurricane Testbed to expedite the 

transfer of research advances into an operational setting. 

● Is guided by operational challenges and requirements identified through the Capabilities 

and Requirements Decision Support (CaRDS) process.  

● Identifies high-priority hydrometeorology challenges in the forecast of extreme 

precipitation and the investigation of new techniques, models, observing and forcings for 

hydrologic prediction as candidate for demonstration and testing. 

 

Every year HMT meteorologists at WPC organize the Winter Weather Experiment (WWE), 

Medium Range Forecast, Flash Flood and Intense Rainfall (FFaIR) Experiment and other efforts 

to test potential new forecasting products and methods with researchers, forecasters, partners, 

etc. This interaction enhances the R2O process.  

 

 

 

 

 

 

  

FFaIR participants display forecast 

maps. 

Participants at the Flash Flood and 

Intense Rainfall Experiment (FFaIR)  

 

https://drive.google.com/drive/folders/1Njp8APZYs-5OYeeHXW2Wu94GBI6-vhtg


 Page | 27 

Appendix D. HMT-relevant Metrics tracked by NOAA 
 

The Following are Government Performance and Results Act (GPRA) measures tracked by 

NOAA, except as noted. GPRA descriptions are taken from the NWS Performance Management 

Web Portal (https://verification.nws.noaa.gov/services/public/index.aspx) and Department of 

Commerce Performance dataset (https://performance.commerce.gov/KPI-NOAA/NOAA-

Accuracy-threat-score-of-Day-1-precipitation-/mvk5-p955).  Current and recent goals and scores 

for each measure can be found at these websites. 

 

Precipitation Forecast Day 1 Threat Score 

 

This Threat Score (TS) measures how well WPC forecasts the occurrence of  precipitation (rain 

or the water equivalent of melted snow or ice pellets) of 1 inch or greater in the 24-hour period 6 

to 30 hours into the future across the contiguous U.S. The TS is a verification score that takes 

into account two types of precipitation forecasting errors: the errors associated with not 

forecasting rainfall where it does occur and those associated with forecasting rainfall where it 

does not occur. The Threat Score is defined as the number of correct forecasts divided by the 

total of number of correct forecasts plus the number of wrong forecasts. The TS varies from 0, 

no correct forecasts, to 100, when the forecast area exactly matches the observed area of 1 inch 

rainfall over the entire U.S. The FY20 annual score goal is 34. The scores vary seasonally during 

the year with higher values generally occurring during the fall and winter when weather systems 

are larger and more well-defined and lower values occurring in the spring and summer when 

precipitation is scattered and on a smaller scale. 

 

WPC also tracks the Day 3, two-inch threat score as a DOC Agency Priority Goal 

(https://www.performance.gov/commerce/APG_commerce_3.html). This is the 

same score as the Day 1 GPRA, except with a higher threshold (2" in 24 hours) and longer lead 

time (3 days in advance). WPC has a goal to maintain a 3-year running average of this TS of  

0.14. According to Novak, sustaining a 0.14 3-day Threat Score gives confidence to provide 

‘high risk’ excessive rainfall outlook category on Day 3 

 

Flash Flood Warnings - Lead Time and Accuracy 

 

Flash flood warning statistics are based on product issuance information and confirmation of 

actual flash floods by the local Weather Forecast Offices.  The metric includes all warned events 

with zero lead times and all unwarned events.  NWS forecasters issue on average approximately 

4,000 flash flood warnings per year.  

  

Flash Flood Warning Lead Time is the difference between the time the warning was issued and 

the time flash flooding was first reported (based on certified storm reports).  The 2020 Lead 

Time goal is 65 minutes.   

 

Flash Flood Accuracy (POD) reflects both the spatial and temporal accuracy of the flash flood 

warning(s). This metric represents the percentage of the flash flood event (area and time) that 

was warned. The 2020 Accuracy goal is 76%.   

 

https://verification.nws.noaa.gov/services/public/index.aspx
https://performance.commerce.gov/KPI-NOAA/NOAA-Accuracy-threat-score-of-Day-1-precipitation-/mvk5-p955
https://performance.commerce.gov/KPI-NOAA/NOAA-Accuracy-threat-score-of-Day-1-precipitation-/mvk5-p955
https://www.performance.gov/commerce/APG_commerce_3.html
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Winter Storms - Lead Time and Accuracy 

 

Similar to Flash Flood Warnings, the Winter Storm GPRA measures include lead time and 

accuracy. Any winter storm event that meets warning criteria verifies any type of winter storm 

warning. Winter storm warning lead times have more than doubled since FY99, to an average of 

just over 20 hours, with some recent leveling since FY13. The accuracy, or Probability of 

Detection (POD), for winter storm warnings has held steady (0.85 to 0.90) since the NWS started 

tracking it as a nationwide measure in FY99. However, some years have shown and will 

continue to show lower hit rates. This is because a drop in the event count for a given year tends 

to produce a lower score, as forecasters have fewer opportunities. For example, drops in the 

annual counts of winter storms from 8748 (FY14) to 6169 or less (FY15 thru FY18) may have 

contributed to the recent decline in hit rates. The FY2020 goals are 20 hours lead time and 90% 

accuracy. 

 

 

Appendix E. Acronyms  
 

APG: Agency priority goal 

CaRDS: Capabilities and Requirements Decision Support 

CIMMS: Cooperative Institute for Mesoscale Meteorological Studies 

CNRFC: NWS California-Nevada River Forecast Center 

CSI: Critical success index (i.e., threat score) 

DOC: Department of Commerce 

EMC: NWS NCEP Environmental Modeling Center 

EPIC: Earth Prediction Innovation Center 

ERO: WPC Excessive Rainfall Outlook 

ESRL: OAR Earth System Research Laboratory 

ETS: Equitable Threat Score 

FAR: False Alarm Ratio 

FFaIR: HMT Flash Flood and Intense Rainfall Experiment 

GFS: Global Forecast System 

GPRA: Government Performance and Results Act 

GSD: OAR/ESRL Global Systems Division 

HFIP: Hurricane Forecast Improvement Project 

HREF: High Resolution Ensemble Forecast  

HRRR: High Resolution Rapid Refresh model 

HWT: OAR-NWS Hazardous Weather Testbed 

HMT: OAR-NWS Hydrometeorological Testbed 

IDSS: Impact-Based Decision Support Services 

JHT: OAR-NWS Joint Hurricane Testbed 

JTTI: OAR-NWS Joint Technology Transfer Initiative  

MAEcond: conditional mean absolute error 

MBRFC: NWS Missouri Basin River Forecast Center 

MRMS: NSSL Multi-radar/Multi-sensor system 

NCEP: NWS National Centers for Environmental Prediction, including WPC, EM 

NGGPS: Next Generation Global Prediction System 
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NOHRSC: NWS National Operational Hydrologic Remote Sensing Center 

NSSL: National Severe Storms Laboratory  

NWC: NWS National Water Center  

NWM: National Water Model 

NWS: NOAA National Weather Service 

OAR: NOAA Office of Oceanic and Atmospheric Research 

OPC: NCEP Ocean Prediction Center  

OWAQ: OAR Office of Weather and Air Quality, now WPO* 

OWP: NWS Office of Water Prediction  

POD: Probability of Detection 

PQPF: Probabilistic quantitative precipitation forecast 

PSL: OAR ESRL Physical Sciences Laboratory (formerly Division)* 

QPE: Quantitative precipitation estimation 

QPF: Quantitative precipitation forecast 

S2S: Subseasonal to seasonal time scale 

SSD: NWS Scientific Services Division (one for each region) 

STI: NWS Office of Science & Technology Integration (STI) 

TS: Threat Score 

UFS: Unified Forecast System 

USGS: U.S. Geological Survey 

USWRP: U.S. Weather Research Program, part of WPO 

WFO: NWS Weather Forecast Office 

WPC: NWS NCEP Weather Prediction Center 

WPO: OAR Weather Program Office, formerly OWAQ* 

WWE: HMT Winter Weather Experiment  

WSSI:  WPC Winter Storm Severity Index 

 

*The names of these organizations were changed between the workshop and the final report. 




